PRINCIPLE FUNCTION

Conversion of input voltage referenced to ground to output current
Integrated protection for IC and external components
Integrated, adjustable current/voltage sources for external components

![Diagram of AM462 IC](image)

\[V_{cc} = 6\ldots35V \]

Single-ended input voltage
\[0\ldots V_{cc} - 5V \]

Output current
\[I_{out} = \text{e.g. } 0/4\ldots20mA \]

Reference voltage
\[V_{ref} = 5/10V \]

Current consumption
\[I_{cc} = \text{up to } 10mA \]

TYPICAL APPLICATIONS

- Adjustable voltage-to-current (V/I) converter
- Adjustable voltage and current source (supply unit)
- Voltage regulator with additional functions
- Industrial protector and output IC for microprocessors (the Frame ASIC concept [1])
- Peripheral processor IC
- For examples of typical applications see Example Applications
CONTENTS

CONTENTS 2

FEATURES 3

GENERAL DESCRIPTION 3

BLOCK DIAGRAM 3

ELECTRICAL SPECIFICATIONS 4

BOUNDARY CONDITIONS 6

DETAILED DESCRIPTION OF FUNCTIONS 6

INITIAL OPERATION OF AM462 8

 General information on 2- and 3-wire applications and the use of current 8
 Setting the output current range 8
 Selecting the supply voltage 9
 Using OP2 as a current source 10
 Using OP2 as a voltage reference 11

POINTS TO NOTE: INITIAL OPERATION OF AM462 12

APPLICATIONS 12

 Typical 3-wire application with an input signal referenced to ground 12
 Typical 2-wire application with an input signal referenced to ground 13
 Application for an input signal with an offset 15

BLOCK DIAGRAM AND PINOUT 17

EXAMPLE APPLICATIONS 18

DELIVERY 20

PACKAGE DIMENSIONS 20

FURTHER READING 20
FEATURES

- Supply voltage: 6...35V
- Wide working temperature range: −40°C...+85°C
- Adjustable integrated reference voltage source: 4.5 to 10V
- Additional voltage/current source
- Adjustable amplification
- Adjustable offset
- Industrial current output (e.g. 0/4...20mA)
- Protection against reverse polarity
- Short-circuit protection
- Output current limitation
- Low-cost device: replaces a number of discrete elements
- 2- and 3-wire operation
- Individually configurable function modules
- RoHS compilant

GENERAL DESCRIPTION

AM462 is a universal V/I converter and amplifier IC with a number of additional functions. The IC basically consists of an amplifier, whose gain can be set externally, and an output stage which can convert voltage signals referenced to ground to industrial current signals. An additional reference voltage source for the supply of external components is also included in the device. A further operational amplifier can be connected up as a current source, voltage reference or comparator.

One of the main features of the IC is its integrated protective circuitry. The device is protected against reverse polarity and has a built-in output current limit. Converter IC AM462 enables industrial current loop signals (e.g. of 0/4–20mA) to be produced relatively easily.

Using the Frame ASIC concept [1] the IC can be connected up to a processor for signal correction.

BLOCK DIAGRAM

Figure 1: Block diagram of AM462 (individually configurable function modules)
ELECTRICAL SPECIFICATIONS

\(T_{\text{amb}} = 25^\circ C, \ V_{\text{CC}} = 24V, \ V_{\text{REF}} = 5V, \ I_{\text{REF}} = 1mA \) (unless otherwise stated); currents flowing into the IC are negative.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage Range</td>
<td>(V_{\text{CC}})</td>
<td>(T_{\text{amb}} = -40...+85^\circ C)</td>
<td>6</td>
<td>35</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Quiescent Current</td>
<td>(I_{\text{CC}})</td>
<td>(T_{\text{amb}} = 0mA)</td>
<td>1.5</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

Temperature Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating</td>
<td>(T_{\text{amb}})</td>
<td></td>
<td>-40</td>
<td>85</td>
<td></td>
<td>(^\circ C)</td>
</tr>
<tr>
<td>Storage</td>
<td>(T_e)</td>
<td></td>
<td>-55</td>
<td>125</td>
<td></td>
<td>(^\circ C)</td>
</tr>
<tr>
<td>Junction</td>
<td>(T_J)</td>
<td></td>
<td></td>
<td>150</td>
<td></td>
<td>(^\circ C)</td>
</tr>
<tr>
<td>Thermal Resistance</td>
<td>(\Theta_{ja})</td>
<td>DIL16 plastic package</td>
<td>70</td>
<td></td>
<td></td>
<td>(^\circ C/W)</td>
</tr>
<tr>
<td></td>
<td>(\Theta_{ja})</td>
<td>SO16 narrow plastic package</td>
<td>140</td>
<td></td>
<td></td>
<td>(^\circ C/W)</td>
</tr>
</tbody>
</table>

Voltage Reference

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>(V_{\text{REF}})</td>
<td>(V_{\text{SET}}) not connected</td>
<td>4.75</td>
<td>5.00</td>
<td>5.25</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(V_{\text{REF},10})</td>
<td>(V_{\text{SET}} = \text{GND}, \ V_{\text{CC}} \geq 11V)</td>
<td>9.5</td>
<td>10.0</td>
<td>10.5</td>
<td>V</td>
</tr>
<tr>
<td>Trim Range</td>
<td>(V_{\text{REF,10}})</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Current</td>
<td>(I_{\text{REF}})</td>
<td>(T_{\text{amb}} = -40...+85^\circ C)</td>
<td>0</td>
<td>10.0</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>(V_{\text{REF}}) vs. Temperature (\frac{dV_{\text{REF}}}{dT})</td>
<td>(T_{\text{amb}} = -40...+85^\circ C)</td>
<td>±90</td>
<td>±140</td>
<td>ppm/(^\circ C)</td>
<td></td>
</tr>
<tr>
<td>Line Regulation</td>
<td>(\frac{dV_{\text{REF}}}{dV})</td>
<td>(V_{\text{CC}} = 6V...35V)</td>
<td>30</td>
<td>80</td>
<td></td>
<td>ppm/V</td>
</tr>
<tr>
<td></td>
<td>(\frac{dV_{\text{REF}}}{dV})</td>
<td>(V_{\text{CC}} = 6V...35V, I_{\text{REF}} = 5mA)</td>
<td>60</td>
<td>150</td>
<td></td>
<td>ppm/V</td>
</tr>
<tr>
<td>Load Regulation</td>
<td>(\frac{dV_{\text{REF}}}{dI})</td>
<td>(I_{\text{REF}} = 5mA)</td>
<td>0.05</td>
<td>0.10</td>
<td></td>
<td>%/mA</td>
</tr>
<tr>
<td></td>
<td>(\frac{dV_{\text{REF}}}{dI})</td>
<td>(I_{\text{REF}} = 5mA)</td>
<td>0.06</td>
<td>0.15</td>
<td></td>
<td>%/mA</td>
</tr>
<tr>
<td>Load Capacitance</td>
<td>(C_L)</td>
<td>Source mode</td>
<td>1.9</td>
<td>2.2</td>
<td>5.0</td>
<td>µF</td>
</tr>
</tbody>
</table>

Current/Voltage Source OP2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Reference</td>
<td>(V_{\text{BG}})</td>
<td>(T_{\text{amb}} = -40...+85^\circ C)</td>
<td>1.20</td>
<td>1.27</td>
<td>1.35</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{BG}}) vs. Temperature (\frac{dV_{\text{BG}}}{dT})</td>
<td>(T_{\text{amb}} = -40...+85^\circ C)</td>
<td>±60</td>
<td>±140</td>
<td>ppm/(^\circ C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Source:</td>
<td>(I_{\text{CR}} = V_{\text{BG}}/R_{\text{CR}}), from Figure 5</td>
<td>(I_{\text{CR}})</td>
<td>0</td>
<td>10</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Adjustable Current Range</td>
<td>(I_{\text{CR}}^*)</td>
<td>(V_{\text{CC}} < 19V)</td>
<td>0</td>
<td>10</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>(V_{\text{CR}})</td>
<td>(V_{\text{CC}} \geq 19V)</td>
<td>(V_{\text{BG}})</td>
<td>(V_{\text{CC}} - 4)</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Voltage Source:</td>
<td>(V_{\text{CR}} = V_{\text{BG}} (1 + \frac{R_7}{R_6})), from Figure 6</td>
<td>(V_{\text{CR}})</td>
<td>0.4</td>
<td>15</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Adjustable Voltage Range</td>
<td>(V_{\text{CR}})</td>
<td>(V_{\text{CC}} < 19V)</td>
<td>0.4</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Output Current</td>
<td>(I_{\text{CR}}^*)</td>
<td>Source</td>
<td>0</td>
<td>10</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Load Capacitance</td>
<td>(C_L)</td>
<td>Sink</td>
<td>(V_{\text{CC}} - 4)</td>
<td>0</td>
<td>10</td>
<td>µA</td>
</tr>
<tr>
<td>Load Capacitance</td>
<td>(C_L)</td>
<td>Source mode</td>
<td>(V_{\text{CC}} - 5)</td>
<td>0</td>
<td>2</td>
<td>mV</td>
</tr>
</tbody>
</table>

Operational Amplifier Gain Stage (OP1)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjustable Gain</td>
<td>(G_{\text{GAIN}})</td>
<td>(V_{\text{CC}} < 10V)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Range</td>
<td>(I_{R})</td>
<td>(V_{\text{CC}} \geq 10V)</td>
<td>0</td>
<td></td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>Power Supply Rejection Ratio</td>
<td>(PSRR)</td>
<td>(V_{\text{CC}} = 10V)</td>
<td>80</td>
<td>90</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Offset Voltage</td>
<td>(V_{\text{OA}})</td>
<td>(\pm 0.5)</td>
<td>±2</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
</tbody>
</table>
Operational Amplifier Gain Stage (OP1) (cont.)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OS} vs. Temperature</td>
<td>dV_{OS}/dT</td>
<td></td>
<td>±3</td>
<td>±7</td>
<td></td>
<td>µV/°C</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>I_b</td>
<td></td>
<td>10</td>
<td>25</td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>I_b vs. Temperature</td>
<td>dI_b/dT</td>
<td></td>
<td>7</td>
<td>20</td>
<td></td>
<td>pA/°C</td>
</tr>
<tr>
<td>Output Voltage Limitation</td>
<td>V_{Lim}</td>
<td></td>
<td>$V_{CC} < 10V$</td>
<td></td>
<td>$V_{CC} - 5$</td>
<td>V</td>
</tr>
<tr>
<td>Output Voltage Range</td>
<td>$V_{OE1/2}$</td>
<td></td>
<td>$V_{CC} < 10V$</td>
<td></td>
<td>$V_{OE1/2}$</td>
<td>V</td>
</tr>
<tr>
<td>Load Capacitance</td>
<td>C_L</td>
<td></td>
<td></td>
<td></td>
<td>250</td>
<td>pF</td>
</tr>
</tbody>
</table>

V/I Converter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>V_{in}</td>
<td>Adjust by R_0</td>
<td>0.75</td>
<td>1.00</td>
<td>1.25</td>
<td>mV</td>
</tr>
<tr>
<td>Offset Voltage at R_0 FS</td>
<td>$V_{os/FS}$</td>
<td></td>
<td>120</td>
<td>160</td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>Output Offset Current</td>
<td>$I_{O/SOS}$</td>
<td>3-wire operation</td>
<td>–25</td>
<td>–35</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>$I_{O/SOS}$ vs. Temperature</td>
<td>$dI_{O/SOS}/dT$</td>
<td>2-wire operation</td>
<td>9.5</td>
<td>14</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>Output Offset Current</td>
<td>$I_{O/SOS}$</td>
<td>2-wire operation</td>
<td>6</td>
<td>8</td>
<td></td>
<td>nA/°C</td>
</tr>
<tr>
<td>Offset Control Current</td>
<td>$I_{O/C}$</td>
<td>2-wire operation, $V_{os}/100$ mV</td>
<td>6</td>
<td>8</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>Output Voltage Range</td>
<td>$V_{O/E}$</td>
<td>$V_{O/E} = R_0 I_{O/E}$, $V_{CC} < 18V$</td>
<td>0</td>
<td>$V_{CC} - 6$</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>$V_{O/E}$</td>
<td>$V_{O/E} = R_0 I_{O/E}$, $V_{CC} ≥ 18V$</td>
<td>0</td>
<td>12</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Output Current Range FS</td>
<td>$I_{O/CFS}$</td>
<td>$I_{O/CFS}$, 3-wire operation</td>
<td>20</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Output Resistance</td>
<td>$R_{O/E}$</td>
<td></td>
<td>0.5</td>
<td>1.0</td>
<td></td>
<td>MΩ</td>
</tr>
<tr>
<td>Load Capacitance</td>
<td>C_L</td>
<td></td>
<td></td>
<td></td>
<td>500</td>
<td>nF</td>
</tr>
</tbody>
</table>

SET Stage

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>V_{SET}</td>
<td></td>
<td>0</td>
<td>1.15</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Offset Voltage</td>
<td>V_{os}</td>
<td></td>
<td>±0.5</td>
<td>±1.5</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>V_{os} vs. Temperature</td>
<td>dV_{os}/dT</td>
<td></td>
<td>±1.6</td>
<td>±5</td>
<td></td>
<td>µV/°C</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>I_b</td>
<td></td>
<td>8</td>
<td>20</td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>I_b vs. Temperature</td>
<td>dI_b/dT</td>
<td></td>
<td>7</td>
<td>18</td>
<td></td>
<td>pA/°C</td>
</tr>
</tbody>
</table>

Protection Functions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Limitation at R_0</td>
<td>V_{Lim}</td>
<td></td>
<td>580</td>
<td>635</td>
<td>690</td>
<td>mV</td>
</tr>
<tr>
<td>Protection against reverse polarity</td>
<td>V_{Lim}</td>
<td>$V_{Lim} = 0$, $V_{in} = G_{SET} V_{SET}$</td>
<td>35</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Current in the event of reverse polarity</td>
<td>$I_{O/C}$</td>
<td>$V_{in} = G_{SET} V_{SET}$</td>
<td>35</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Ground vs. V_1 vs. $V_{O/E}$</td>
<td>$V_{O/E}$</td>
<td></td>
<td>Ground vs. V_2 vs. $I_{O/E}$</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

System Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonlinearity</td>
<td>Ideal input</td>
<td>0.05</td>
<td>0.15</td>
<td></td>
<td>%FS</td>
</tr>
</tbody>
</table>

* In 2-wire operation a maximum current of $I_{O/CFS} – I_{CC}$ is valid.
BOUNDARY CONDITIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sense Resistor</td>
<td>R_0</td>
<td>$I_{OUTFS} \approx 20 \text{mA}$</td>
<td>17</td>
<td>27</td>
<td>38</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>$c = 20 \text{mA}/I_{OUTFS}$</td>
<td>$c \cdot 17$</td>
<td>$c \cdot 27$</td>
<td>$c \cdot 38$</td>
<td>--</td>
</tr>
<tr>
<td>Stabilization Resistor</td>
<td>R_5</td>
<td>$I_{OUTFS} \approx 20 \text{mA}$</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>R_3</td>
<td>$c = 20 \text{mA}/I_{OUTFS}$</td>
<td>$c \cdot 35$</td>
<td>$c \cdot 40$</td>
<td>$c \cdot 45$</td>
<td>--</td>
</tr>
<tr>
<td>Load Resistance</td>
<td>R_L</td>
<td>Limitation only for 3-wire operation</td>
<td>0</td>
<td>600</td>
<td></td>
<td>--</td>
</tr>
<tr>
<td>Sum Gain Resistors</td>
<td>$R_1 + R_2$</td>
<td></td>
<td>20</td>
<td>200</td>
<td></td>
<td>k</td>
</tr>
<tr>
<td>Sum Offset Resistors</td>
<td>$R_3 + R_4$</td>
<td></td>
<td>20</td>
<td>200</td>
<td></td>
<td>k</td>
</tr>
<tr>
<td>V_{SET} Capacitance</td>
<td>C_1</td>
<td>Ceramic</td>
<td>1.9</td>
<td>2.2</td>
<td>5.0</td>
<td>μF</td>
</tr>
<tr>
<td>Output Capacitance</td>
<td>C_2</td>
<td>Only for 2-wire operation</td>
<td>90</td>
<td>100</td>
<td>250</td>
<td>nF</td>
</tr>
<tr>
<td>D_1 Breakdown Voltage</td>
<td>V_{int}</td>
<td></td>
<td>35</td>
<td>50</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>T_1 Forward Current Gain</td>
<td>β_T</td>
<td>BCX54/55/56, for example</td>
<td>50</td>
<td>150</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DETAILED DESCRIPTION OF FUNCTIONS

AM462 is a modular, universal V/I converter and protector IC which has been specially developed for the conditioning of voltage signals referenced to ground. It is designed for both 2- and 3-wire operation in industrial applications (cf. application in Figure 8). AM462’s various functions are depicted in the block diagram (Figure 2) which also illustrates how few external components are required for the operation of this particular device.

AM462 consists of several modular function blocks (operational amplifiers, voltage-to-current converters and references) which, depending on external configurations, can either be switched to one another or operated separately (see the basic circuitry in Figure 2):

1. **Operational amplifier stage** OP1 enables a positive voltage signal to be amplified. OP1 gain G_{GAIN} can be set via external resistors R_1 and R_2. Protective circuitry against overvoltage is integrated into the chip, limiting the voltage to the set value of the reference voltage. Output voltage V_{OUTAD} at pin $OUTAD$ is calculated as:

$$V_{OUTAD} = V_{INP} \cdot G_{GAIN} \text{ with } G_{GAIN} = 1 + \frac{R_1}{R_2}$$

where V_{INP} is the voltage at OP1’s input pin 6 (INP).

2. The internal voltage-to-current converter (V/I converter) provides a voltage-controlled current signal at IC output $IOUT$ (pin 8) which activates an external transistor T_1; this in turn supplies the actual output current I_{OUT}. To reduce power dissipation the transistor is an external component and protected against reverse polarity by an additional diode D_1. Via pin SET an offset current I_{SET} can be set at output $IOUT$ (with the help of the internal voltage reference and an external voltage divider as shown in Figure 2, for example). External resistor R_0 permits the output current to be finely adjusted with parallel operation of current and the voltage output. For the output current provided by T_1 the following ratio applies:
Industrial V/I Converter and Protector IC
AM462

\[I_{\text{OUT}} = \frac{V_{\text{INDAI}} \cdot G_B}{R_0} + I_{\text{SET}} = \frac{V_{\text{INDAI}}}{8R_0} + I_{\text{SET}} \text{ with } I_{\text{SET}} = \frac{V_{\text{SET}}}{2R_0} \] \hspace{1cm} (2)

with \(V_{\text{INDAI}} \) the voltage at pin 6 (\text{INDAI}) and \(V_{\text{SET}} \) the voltage at pin 16 (\text{SET}) \(^1\).

3. The AM462 reference voltage source enables voltage to be supplied to external components (such as sensors, microprocessors, etc.). The reference voltage value \(V_{\text{REF}} \) can be set via pin 13 \text{VSET}. If pin \text{VSET} is not connected, \(V_{\text{REF}} = 5V \); if \text{VSET} is switched to ground, \(V_{\text{REF}} = 10V \). Values between the above can be set if two external resistors are used (inserted between pin \text{VREF} and pin \text{VSET} and between pin \text{VSET} and \text{GND}; see Figure 2).

External (ceramic) capacitor \(C_1 \) at pin \text{VREF} stabilizes the reference voltage. It must be connected even if the voltage reference is not in use.

4. The additional operational amplifier stage \text{OP2} can be used as a current or voltage source to supply external components. \text{OP2}'s positive input is connected internally to voltage \(V_{BG} \) so that the output current or output voltage can be set across a wide range using external resistors.

\(^1\) The construction of the V/I converter is such that output current \(I_{\text{OUT}} \) is largely independent of the current amplification \(\beta \) of external transistor \(T_1 \). Production-specific variations in the current amplification of the transistors used are compensated for internally by the V/I converter.
INITIAL OPERATION OF AM462

General information on 2- and 3-wire applications and the use of current

In 3-wire operation (cf. Figure 3 right and Figure 7) the ground of the IC (pin GND) is connected up to the external mass of the system Ground. The system's supply voltage V_S is connected to pin VCC and pin VCC to pin RS^+. In 2-wire operation (cf. Figure 3 left and Figure 7) system supply voltage V_S is connected to pin RS^+ and pin VCC to RS^-. The ground of the IC (pin GND) is connected to the node between resistor R_5 and load resistor R_L (current output I_{OUT}). IC ground (GND) is not the same as system ground (Ground)!! The output signal is picked up via load resistor R_L which connects current output I_{OUT} to the system ground.

In 2-wire operation the IC ground is "virtual" (floating), as with a constant load resistance the supply voltage of the device V_{CC} changes according to the current. As a rule, the following equation applies to 2-wire operation:

$$V_{CC} = V_S - I_{OUT} (V_{IN}) R_L$$

(3)

The reason for this is that in 2-wire operation the IC is connected in series to the actual load resistor R_L. This is illustrated in Figure 3.

In 3-wire operation $V_{CC} = V_S$, as the IC ground is connected to the ground of the system.

![Figure 3: The difference between 2- and 3-wire operation](image)

Setting the output current range

When using amplification stage OP1 together with the V/I converter for voltage-to-current conversion the offset of the output current should first be compensated for by suitable selection of resistors R_3 and R_4. To this end the OP1 input must be connected to ground ($V_{INP} = 0$). With the short circuit at the input and by connecting up V/I converter pin $VSET$ as shown in Figure 2 the values of the output current according to Equation 2 are as follows:
\[I_{OUT}(V_{INAI} = 0) = I_{SET} = \frac{V_{REF}}{2R_0} \cdot \frac{R_4}{R_3 + R_4} \]

(4)

and thus for the ratio of the resistors \(R_3/R_4 \):

\[\frac{R_3}{R_4} = \frac{V_{REF}}{2R_0 I_{SET}} - 1 \]

(5)

The output current range is set in conjunction with the selected external resistors \(R_1 \) and \(R_2 \) (or fine adjustment with \(R_0 \)). Using Equations 1 and 2 the following is calculated for output current \(I_{OUT} \):

\[I_{OUT} = V_{\text{INP}} \cdot \frac{G_{\text{GAIN}}}{8R_0} + I_{SET} \text{ with } G_{\text{GAIN}} = 1 + \frac{R_1}{R_2} \]

(6)

Selecting the supply voltage

System supply voltage \(V_S \) needed to operate AM462 is dependent on the selected mode of operation.

When using current output pin \(I_{OUT} \) (in conjunction with the external transistor) the value of \(V_S \) is dependent on that of the relevant load resistor \(R_L \) (max. 600\(\Omega \)) used by the application. The minimum system supply voltage \(V_S \) is then:

\[V_S \geq I_{OUT\max} R_L + V_{CC\min} \]

(7)

Here, \(I_{OUT\max} \) stands for the maximum output current and \(V_{CC\min} \) for the minimum IC supply voltage which is dependent on the selected reference voltage:

\[V_{CC\min} \geq V_{REF} + 1V \]

(8)

Figure 4: Working range in conjunction with the load resistor
The working range resulting from Equation Fehler! Verweisquelle konnte nicht gefunden werden. is described in Figure 4. Example calculations and typical values for the external components can be found in the example applications from page 13 onwards.

Using OP2 as a current source

The additional operational amplifier OP2 can easily be connected up as a constant current source. Using the circuit in Figure 5 the following applies:

Example: OP2 as current source

\[
I_S = \frac{V_{BG}}{R_{SET}} = \frac{1.27 \text{ V}}{R_{SET}} \tag{9}
\]

The bridge symbol represents the component to be supplied with current (e.g. a piezoresistive sensing element or temperature sensor).

A supply current of \(I_S = 1\text{mA}\) is to be set. Using Equation Fehler! Verweisquelle konnte nicht gefunden werden. the following value is calculated for external resistor \(R_{SET}\), which in turn stipulates the size of the current:

\[
R_{SET} = \frac{V_{BG}}{I_S} = \frac{1.27 \text{ V}}{1\text{mA}} = 1.27 \text{k} \Omega
\]
Using OP2 as a voltage reference

In addition to the integrated voltage reference OP2 can also be used to supply voltage to external components, such as A/D converters and microprocessors, for example. Lower voltages can be generated (e.g. 3.3V) which with the increasing miniaturization of devices and need for ever lower levels of power dissipation in digital components is today of growing importance.

\[
V_{\text{VREF}} = V_{\text{BG}} \left(1 + \frac{R_6}{R_7}\right) = 1.27V \left(1 + \frac{R_6}{R_7}\right)
\]

(10)

Example: OP2 as voltage reference

A voltage of \(V_{\text{VREF}} = 3.3V\) is to be set. Using Equation (10) the following ratio is calculated for external resistors \(R_6\) and \(R_7\):

\[
\frac{R_6}{R_7} = \frac{V_{\text{VREF}}}{V_{\text{BG}}} - 1 \approx 2.6 - 1 = 1.6
\]

The following example values are produced for the resistors:

\(R_7 = 10k\Omega\) \hspace{1cm} \(R_6 = 16k\Omega\)
POINTS TO NOTE: INITIAL OPERATION OF AM462

1. When operating AM462 it is imperative that external capacitor C_1 is always connected (cf. Figure 2). Care must be taken that the value of the capacitance does not lie beyond its given range, even across the range of temperature (see Boundary Conditions on page 7). In 2-wire operation ceramic capacitor C_2 must also be used (cf. Figure 8).

2. In a 2-wire setup the power consumption of the overall system (AM462 plus all external components, including the configuration resistors) must not exceed the sum of $I_{OUT_{min}}$ (usually 4mA).

3. All AM462 function blocks not required by the application must be connected to a defined (and allowed) potential.

4. A load resistance of 600Ω maximum is permitted for the current output.

5. The values of external resistors R_0, R_1, R_2, R_3, R_4 and R_5 must be selected within the permissible range given in the boundary conditions on page 7.

APPLICATIONS

Typical 3-wire application with an input signal referenced to ground

Figure 7 shows a 3-wire application in which AM462 amplifies and converts a positive voltage signal referenced to ground. The unused blocks (e.g. OP2) have been set to defined operating points in the application. Alternatively, these function groups can also be used here (e.g. to supply external components).

For output current I_{OUT} the following applies according to Equations (1) and (2):

$$I_{OUT} = V_{INP} \cdot \frac{G_{GAIN}}{8R_0} + I_{SET} \quad \text{with} \quad G_{GAIN} = 1 + \frac{R_1}{R_2}$$

Example: 0…20mA Voltage-To-Current Converter

To convert a signal of $V_{INP} = 0...1V$ at the OP1 input the external components are to be dimensioned in such a way that the output current has a range of 0...20mA (i.e. $I_{SET} = 0 \Rightarrow SET = GND$). With $R_0 = 27\Omega$:

$$I_{OUT} = V_{INP} \cdot \frac{G_{GAIN}}{8R_0} + I_{SET} = V_{INP} \cdot \frac{G_{GAIN}}{8R_0}$$

The following then applies to the gain:
Observing the boundary conditions the following values are obtained for the external components:

\[R_1 \approx 33.2\, k\Omega \quad R_2 = 10\, k\Omega \quad R_0 = 27\, \Omega \quad R_5 = 39\, \Omega \quad R_L = 0\ldots600\, \Omega \quad C_1 = 2.2\, \mu F \]

Typical 2-wire application with an input signal referenced to ground

In a 2-wire version (cf. Figure 8) system supply voltage \(V_S \) is connected up to pin 11 (\(RS^+ \)) and pin 10 (\(VCC \)) to pin 9 (\(RS^- \)). The ground of the IC at pin 14 (\(GND \)) is connected to the node between resistor \(R_5 \) and load resistor \(R_L \). IC ground (\(GND \)) is not the same as system ground (\(Ground \)). The output signal is picked up via load resistor \(R_L \) which connects current output \(I_{OUT} \) to the system ground.

It must be ensured that in 2-wire operation an additional current load (use of current/voltage source) is limited to 4mA due to the domestic current supply and limitation.

For output current \(I_{OUT} \) the following applies according to Equations (1) (2) and (4):

\[
I_{OUT} = V_{INP} \cdot \frac{G_{Gain}}{8R_0} + I_{SET} \quad \text{with} \quad G_I = G_{Gain} = 1 + \frac{R_1}{R_2} \quad \text{and} \quad I_{SET} = \frac{V_{REF}}{2R_0} \cdot \frac{R_1}{R_1 + R_4}
\]
Example: 4...20mA Voltage-To-Current Converter in 2-wire application

To convert a signal of $V_{\text{INP}} = 0...1\text{V}$ at the OP1 input the external components are to be dimensioned in such a way that the output current has a range of 4...20mA. The following applies:

$$I_{\text{OUT}} = V_{\text{INP}} \cdot \frac{G_{\text{GAIN}}}{8R_0} + I_{\text{SET}} = V_{\text{INP}} \cdot \frac{G_{\text{GAIN}}}{8R_0} + 4\text{mA}$$

With $R_0 = 27\Omega$ and $I_{\text{SET}} = 4\text{mA}$. Equation(4) produces the following relation between resistor R_3 and R_4:

$$\frac{R_3}{R_4} = \frac{V_{\text{REF}}}{2R_0I_{\text{SET}}} - 1 = \frac{5\text{V}}{2 \cdot 27\Omega \cdot 4\text{mA}} - 1 \approx 22.15$$

and thus the following value for the gain:

$$G_{\text{GAIN}} = 8R_0 \frac{I_{\text{OUT,max}} - I_{\text{SET}}}{V_{\text{INP}}} = 8 \cdot 27\Omega \cdot 16\text{mA} \cdot \frac{1\text{V}}{1\text{V}} = 3.456 \Rightarrow \frac{R_1}{R_2} = 3.456 - 1 = 2.456$$

Observing the given boundary conditions, the following values are obtained for the external components:

- $R_1 \approx 24.56k\Omega$
- $R_2 = 10k\Omega$
- $R_3 \approx 44.3k\Omega$
- $R_4 = 2k\Omega$
- $R_0 = 27\Omega$
- $R_5 = 39\Omega$
- $R_7 = 0...600\Omega$
- $C_1 = 2.2\mu\text{F}$
- $C_2 = 100\text{nF}$
Application for an input signal with an offset

It is not uncommon for input signals to have an offset (e.g. of 0.5V for a 0.5...4.5V input signal or 1V for a 1..6V input signal). For signals such as these an offset current is generated at the IC output also when \(I_{SET} = 0 \). In this case the output current will be always: \(I_{OUT} \neq 0 \). The circuit can then be dimensioned as described in the following.

According to Equation (2) the following applies for a required current swing at the output of \(\Delta I_{OUT} = I_{OUT\text{max}} - I_{OUT\text{min}} \):

\[
\Delta I_{OUT} = \frac{\Delta V_{\text{PIN}}}{{8R_0}} \quad \Rightarrow \quad \Delta V_{\text{PIN}} = 8R_0\Delta I_{OUT} \tag{11}
\]

For an input current swing of \(\Delta V_{\text{IN}} = V_{\text{INmax}} - V_{\text{INmin}} \) the necessary gain is calculated as:

\[
G = \frac{\Delta V_{\text{PIN}}}{\Delta V_{\text{IN}}} \tag{12}
\]

If \(G < 1 \), the input signal can be routed directly to pin 6 (\(\text{INDAI} \)) via a voltage divider without \(\text{OP1} \) having to be used (see Figure 9). With this circuitry the following results:

\[
G = \frac{\Delta V_{\text{PIN}}}{\Delta V_{\text{IN}}} = \frac{R_2}{R_6 + R_7} \quad \Rightarrow \quad \frac{R_6}{R_7} = \frac{\Delta V_{\text{IN}}}{\Delta V_{\text{PIN}}} - 1 \tag{13}
\]

From input offset \(V_{\text{INmin}} \) the following output current is then obtained when \(I_{SET} = 0 \):

\[
I_{OUT}(V_{\text{INmin}}) = V_{\text{INmin}} \cdot \frac{R_7}{R_6 + R_7} \cdot \frac{1}{8R_0} \tag{14}
\]

Using the \(\text{SET} \) pin and Equation 2 the required minimum output current \(I_{OUT\text{min}} \) can then be set:

\[
I_{OUT} = \frac{V_{\text{IN}}}{R_6 + R_7} \cdot \frac{1}{8R_0} + I_{SET} \quad \text{with} \quad I_{SET} = \frac{V_{\text{REF}}}{2} \frac{R_3}{R_3 + R_4} \tag{15}
\]

Example: 4..20mA Voltage-To-Current Converter with Input Signal Offset (3-wire application)

To convert a signal of \(V_{\text{IN}} = 0.5...4.5V \) the external components are to be dimensioned in such a way that the output current has a range of 4...20mA. The circuitry is shown in Figure 9. \(\text{OP1} \) is used as input stage to have a high ohmic input and to profite from internal overvoltage protection.

\(\text{OP2} \) is not used here. It is, however, available to the user as an additional OP. The pin 1 and 2 has to be connected.

With reference to Equation (11) and with \(R_0 = 27\Omega \), a voltage swing is obtained at pin 6 of:

\[
\Delta V_{\text{PIN3}} = \Delta V_{\text{PIN6}} = 8R_0\Delta I_{OUT} = 8 \cdot 27\Omega \cdot 16\text{mA} = 3.456\text{V}
\]
Using Equation (13) the following applies:

\[
\frac{R_6}{R_7} = \frac{\Delta V_{IN} - \Delta V_{PIN6}}{\Delta V_{PIN6}} = \frac{4V - 3.456V}{3.456V} \approx 0.157 \quad \Rightarrow \quad R_7 = 6.35 \cdot R_6
\]

According to Equation (14) the minimum output current generated by the input offset is calculated as:

\[
I_{OUT_{\text{min}}} = V_{IN_{\text{min}}} \cdot \frac{R_7}{R_6 + R_7} \cdot \frac{1}{8R_6} \cdot \frac{0.5V}{6.37} \cdot \frac{1}{6.37 + 1} \cdot \frac{1}{8 \cdot 27 \Omega} \approx 2\text{mA}
\]

To obtain an output current of \(I_{OUT} = 4...20\text{mA}\), according to the above a current of \(I_{SET} = 2\text{mA}\) must then be added. With reference to Equation (5) the ratio of \(R_3\) to \(R_4\) is calculated thus:

\[
I_{SET} \cdot \frac{1}{2mA} = \frac{V_{REF}}{2R_0} \cdot \frac{R_4}{R_3 + R_4} \quad \Rightarrow \quad \frac{R_3}{R_4} = \frac{V_{REF}}{2R_0} \cdot I_{SET} - 1 = \frac{5V}{2 \cdot 27\Omega \cdot 2\text{mA}} - 1 \approx 45.3
\]

Observing the given boundary conditions, the following values are obtained for the external components:

\[
\begin{align*}
R_0 &= 27\Omega & R_6 &\approx 10k\Omega & R_7 &= 63.7k\Omega & R_3 &= 90.6k\Omega & R_4 &= 2k\Omega \\
R_5 &= 39\Omega & R_L &= 0...600\Omega & C_1 &= 2.2\mu\text{F} & R_9 &= 47\text{ k}\Omega
\end{align*}
\]
BLOCK DIAGRAM AND PINOUT

![Block diagram of AM462](image)

Figure 10: Block diagram of AM462

Table 1: AM462 Pin out

<table>
<thead>
<tr>
<th>PIN</th>
<th>NAME</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CVREF</td>
<td>Current/Voltage reference</td>
</tr>
<tr>
<td>2</td>
<td>CVSET</td>
<td>Current/Voltage reference set</td>
</tr>
<tr>
<td>3</td>
<td>INP</td>
<td>Positive input</td>
</tr>
<tr>
<td>4</td>
<td>INN</td>
<td>Negative input</td>
</tr>
<tr>
<td>5</td>
<td>OUTAD</td>
<td>System amplification output</td>
</tr>
<tr>
<td>6</td>
<td>INDAI</td>
<td>Current output stage input</td>
</tr>
<tr>
<td>7</td>
<td>N.C.</td>
<td>Not connected</td>
</tr>
<tr>
<td>8</td>
<td>IOUT</td>
<td>Current output</td>
</tr>
<tr>
<td>9</td>
<td>RS−</td>
<td>Sensing resistor -</td>
</tr>
<tr>
<td>10</td>
<td>VCC</td>
<td>Supply voltage</td>
</tr>
<tr>
<td>11</td>
<td>RS+</td>
<td>Sensing resistor +</td>
</tr>
<tr>
<td>12</td>
<td>N.C.</td>
<td>Not connected</td>
</tr>
<tr>
<td>13</td>
<td>VSET</td>
<td>Reference voltage source set</td>
</tr>
<tr>
<td>14</td>
<td>GND</td>
<td>IC ground</td>
</tr>
<tr>
<td>15</td>
<td>VREF</td>
<td>Reference voltage source output</td>
</tr>
<tr>
<td>16</td>
<td>SET</td>
<td>Output offset current set</td>
</tr>
</tbody>
</table>

Figure 11: AM462 Pin out
EXAMPLE APPLICATIONS

• Application as a voltage-to-current converter IC

![Diagram of AM462 as a voltage-to-current converter IC]

$V_{IN} = 0\ldots1, 0\ldots5V$

\ldots and other

$0/4\ldots20mA$

$6\ldots35V$

Protection against short circuiting and reverse polarity

Figure 12: Application as a current converter IC

• Converting a 0.5...4.5V sensor (voltage) signal

![Diagram of converting a 0.5...4.5V sensor signal]

$V_{REF} = 5/10V$

$V_{OUT} = 0.5\ldots4.5V$

$4\ldots20mA$

$6\ldots35V$

Protection against short circuiting and reverse polarity

Figure 13: Converting a 0.5...4.5V sensor signal

• Configuration as a peripheral processor IC [2]

![Diagram of configuration as a peripheral processor IC]

$V_{VREF} = 5V$

$V_{CVREF} = 3.3V$

$V_{IN} = 0/4\ldots20mA$

$6\ldots35V$

Protection against short circuiting and reverse polarity

Figure 14: Configuration as a peripheral processor IC and supply unit
Industrial V/I Converter and Protector IC
AM462

- **Application as an analog output IC and supply unit for sensors**

![Diagram](image1)

Figure 15: Output IC and supply unit in sensor applications

- **Application as a front-end and back-end IC for microprocessors**

![Diagram](image2)

*Figure 16: Application as an analog front end and back end for microprocessors
(Frame ASIC concept)*
DELIVERY

The AM462 V/I converter and protector IC is available as the following packages:

- SSOP16
- SO16(n)
- Dice on 5" blue foil (on request)

PACKAGE DIMENSIONS

Please see our website (data sheets: package.pdf).

FURTHER READING

www.analogmicro.de

[1] The Frame ASIC concept: See:

[2] PR1011 - The AM462 can be used as an integrated solution to interface a microprocessor to the industrial 4...20mA network. See: Technical Articles:
PR1012 - Voltage-to-current converter IC for 2-wire current loop applications (4...20mA). See: Technical Articles
AN1014 - Interfacing the µProcessor with the 4...20mA current loop signal (PLC). See: Application

NOTES

Analog Microelectronics reserves the right to make amendments to any dimensions, technical data or other information contained herein without further notice.